On the role of curvature singularities in the perception of outline drawings of objects

Johan Wagemans

Laboratory of Experimental Psychology
University of Leuven
Belgium

Workshop on Shape Perception in Human and Computer Vision,
ECCV 2008, Marseille, 18 October 2008
Aim

To provide a brief overview of a large-scale research program on this topic

- general ideas and findings
- several recent papers (send email to johan.wagemans@psy.kuleuven.be)
- benchmark data sets to test specific ideas (also from computer vision)
overview paper:
Overview

1. Introduction
2. Identification study with silhouette and outline versions
3. Saliency study
4. Identification study with straight-line versions
5. Identification study with fragmented versions
6. Segmentation study
7. Current directions
Overview

1. Introduction
2. Identification study with silhouette and outline versions
3. Saliency study
4. Identification study with straight-line versions
5. Identification study with fragmented versions
6. Segmentation study
7. Current directions
Introduction

• shape-based object identification
• information about shape in line drawings
• old problem but limited understanding
Introduction (ctd)

• two demonstrations of importance of curvature extrema

• first: some basic definitions
Introduction (ctd)

- 3 types of curvature singularities:
Introduction (ctd)

• 3 types of curvature singularities:

positive maxima

M+
Introduction (ctd)

• 3 types of curvature singularities:

negative minima

M+ and m-
= Extrema (E)
Introduction (ctd)

• 3 types of curvature singularities:

inflections
Introduction (ctd)

• Attneave (1954): demonstration 1
Introduction (ctd)

• Attneave (1954): demonstration 2
• some nice demonstrations but also good reasons to study this in more detail
 – just demonstrations
 – some empirical doubts
Lowe (1986)
• some nice demonstrations but also good reasons to study this in more detail
 – just demonstrations
 – some empirical doubts
 – some computational concerns
• some nice demonstrations but also good reasons to study this in more detail
 – just demonstrations
 – some empirical doubts
 – some computational concerns
 – some additional theoretical work, e.g.
 • Koenderink (1984) and Koenderink & van Doorn (1982): inflections on contours mark boundary between positively and negatively curved surface patches on 3-D objects
 • Feldman & Singh (2005): information-theoretical analysis (m- more salient than M+)
Snodgrass and Vanderwart stimuli (1980)

- 260 line drawings of everyday objects
- norms of name agreement, complexity, familiarity, etc.
- widely used in research on object identification, picture naming, priming, etc.
Overview

1. Introduction
2. Identification study with silhouette and outline versions
3. Saliency study
4. Identification study with straight-line versions
5. Identification study with fragmented versions
6. Segmentation study
7. Current directions
Introduction (ctd)

- our variants of the Snodgrass and Vanderwart stimuli:
 - silhouettes (completely black inside)
 - outlines (edge extraction and spline fitting)
 - identification norms
our variants of the Snodgrass and Vanderwart stimuli:

- complete, closed, smooth contours
- discrete pixels with curvature values
- curvature graph with singularities
Overview

1. Introduction
2. Identification study with silhouette and outline versions
3. Saliency study
4. Identification study with straight-line versions
5. Identification study with fragmented versions
6. Segmentation study
7. Current directions
• 161 subjects: first-year psychology students at the University of Leuven

• subjects look at shape as a whole (1 sec)
• mark visually salient points [1-∞] using a computer mouse [5-∞ sec] e.g.
 • points that attract your attention
 • points that can allow shape reconstruction
• each subject: 65 outlines (4 balanced sets)
• each outline: $N = 40$ (2.2)
Start & go counter-clockwise

Saliency graph

Cut-off

Curvature graph

Zero line
Overview

1. Introduction
2. Identification study with silhouette and outline versions
3. Saliency study
4. Identification study with straight-line versions
5. Identification study with fragmented versions
6. Segmentation study
7. Current directions
• very simple idea
• select particular types of points along the contour and connect these by straight lines
• compare identification rates for versions with different selected points
• two basic types of points:
 - mathematically defined curvature singularities
 - subject-defined salient points
Mathematically defined curvature singularities

- 184 stimuli: those that are reasonably well identified on the basis of the whole contour
- 108 subjects: first-year psychology students at the University of Leuven
• different selection of mathematical singularities in 2 conditions: E versus I
• different number of singularities in 2 versions of the experiment:
 • one extremum per segment \((N = 58)\)
 • number of singularities depending on number of salient points in the second study \((N = 50)\)
• each subject received both conditions (E and I) with different stimuli per condition (stimulus assignment counterbalanced across subjects)

• each stimulus presented only once per subject (for max. 5 sec each)
one per segment

count as salient
• intuition of Attneave (1954) clearly confirmed: E are most informative
• robust finding: no strong effects of selection criterion
• but in addition: some interesting stimulus differences
E (93%) I (4%)

$N = 127$
E (86%)

I (96%)

$N = 12$
Subject-defined salient points

- 108 new subjects
- selection of subject-defined salient points (with fixed parameter values for smoothing and threshold) and points halfway in-between (S versus M)
- 2 versions
 - 100%
 - 75%
• each subject received all four conditions (S 100%, M 100%, S 75%, and M 75%) with different stimuli per condition (stimulus assignment counterbalanced across subjects)

• each stimulus presented only once per subject (for max. 5 sec each)
Mathematically defined subject-defined
% correct identification

- E/S
- I/M

subject-defined
mathematically defined
Overview

1. Introduction
2. Identification study with silhouette and outline versions
3. Saliency study
4. Identification study with straight-line versions
5. Identification study with fragmented versions
6. Segmentation study
7. Current directions
very simple idea

• present only fragments of the contour, centered on particular points

• compare identification rates for versions with different selected points
• 188 stimuli: those that are reasonably well identified on the basis of the whole contour

• 200 subjects: first-year psychology students at the University of Leuven
• two types of fragments:
 • centered on salient points (S)
 • centered on midpoints (M)

• four levels of fragmentation: 15, 20, 25, 30% of the contour presented
each subject received all eight conditions with different stimuli per condition (stimulus assignment counterbalanced across subjects)

each stimulus presented only once per subject (for max. 5 sec each)
S 25%
38%
M 25%
73%

S 30%
44%
M 30%
84%
• in sharp contrast to straight-line versions, fragments centered on midpoints more informative than fragments centered on salient points

• possible reasons
 - larger number of longer fragments
 - better direction information
 - easier grouping
 - ...

See also

 - brief exposures
 - more focus on differences between shapes/objects
 - more focus on differences with Biederman & Blickle (1985)
Overview

1. Introduction
2. Identification study with silhouette and outline versions
3. Saliency study
4. Identification study with straight-line versions
5. Identification study with fragmented versions
6. Segmentation study
7. Current directions
• 88 stimuli: 44 that are reasonably well identified on the basis of the whole contour and 44 difficult to identify
• 201 subjects: first-year psychology students at the University of Leuven
• 22 stimuli per subject
• paper-and-pencil test
Minima rule by Hoffman & Richards (1984)
Limbs and necks by Siddiqi et al. (1996)
Short-cut rule by Singh et al. (1999)
Overview

1. Introduction
2. Identification study with silhouette and outline versions
3. Saliency study
4. Identification study with straight-line versions
5. Identification study with fragmented versions
6. Segmentation study
7. Current directions
Current directions

• More fine-grained analysis of differences between shapes/objects

• Interactions between contour grouping, figure-ground segmentation and object identification
Take home message

• Contours, curvature, and curvature singularities are clearly important

• More global information also plays an important role (e.g. collinearity, good continuation, parallelism, symmetry, …)
Thank you

- johan.wagemans@psy.kuleuven.be